Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Rock Phosphate Solubilizing Microorganisms  Isolated from Maize Rhizosphere Soil

DOI: http://dx.doi.org/10.18512/1980-6477/rbms.v13n1p69-81

http://rbms.cnpms.embrapa.br/index.php/ojs/index 

downloadpdf

Eliane A. Gomes1, Ubiana de C. Silva2, Ivanildo E. Marriel1, Christiane A. de Oliveira1 & Ubiraci G. de P. Lana1

 

Abstract: The selection of microorganisms capable of solubilizing phosphorus (P) from rock phosphates (RP) may contribute to reduce the dependence of imported fertilizers in grain crops, reducing the costs of agricultural production, and also the environmental impacts. This study tested 59 microorganisms (46 bacteria and 13 fungi) isolated from maize rhizosphere for solubilization of two RP, Araxá and Itafós phosphate in vitro (PA and PI, respectively). Among the 59 microorganisms solubilizing PA, 51% of the bacteria and 8% of fungi were classified as efficient. For PI, among 18 isolates, 50% of the bacteria and no fungi were efficient. There were significant differences in the availability of P among strains for both phosphates and most isolates evaluated for both types of rocks released more soluble P from PI than PA. Bacterial isolates CMSB58, CMSB32, CMSB20 and CMSB46 solubilized almost 20% of the P total in the PA and CMSB58, CMSB82, CMSB91 and CMSB48 solubilized more than 25% of the PI. The solubilizing activity of both phosphates was associated with a reduction of pH which suggests that the acidification of the culture medium can be one of the mechanisms involved in the solubilization of P. There was a dominance of the genera Burkholderia and Bacillus in the group of the most efficient bacteria and Talaromyces and Penicillium in the fungi group. The contribution of these strains to increasing the phosphorus nutrition of grain crops should be investigated further by in vivo experiments.

Key words: Biosolubilization; Phosphorus; Zea mays; Araxá phosphate; Itafós phosphate.

 

Resumo: A seleção de microrganismos capazes de solubilizarem fósforo (P) a partir de fosfatos de rocha (FR) pode contribuir para reduzir a dependência de fertilizantes importados em culturas de grãos, reduzindo os custos da produção agrícola e também os impactos ambientais. Este estudo avaliou 59 microrganismos (46 bactérias e 13 fungos), isolados da rizosfera de milho, quanto à solubilização de dois FR, Araxá e Itafós in vitro (FA e FI, respectivamente). Entre os 59 microrganismos solubilizadores de PA, 51% das bactérias e 8% dos fungos foram classificados como eficientes. Para FI, entre 18 isolados, 50% das bactérias e nenhum fungo foram eficientes. Houve diferença significativa na disponibilidade de P entre as cepas em ambos os fosfatos e a maioria dos isolados avaliados em ambos os tipos de rocha liberaram mais P solúvel de FI em comparação com FA. As bactérias CMSB58, CMSB32, CMSB20 e CMSB46 solubilizaram quase 20% do P total em FA e CMSB58, CMSB82, CMSB91 e CMSB48 solubilizaram mais que 25% de FI. A atividade de solubilização para ambos os fosfatos foi associada com a redução de pH, sugerindo que a acidificação do meio de cultura pode ser um dos mecanismos envolvidos na solubilização de P. Houve predominância dos gêneros Burkholderia e Bacillus no grupo de bactérias mais eficientes e Talaromyces e Penicillium no grupo dos fungos. A contribuição destes isolados na melhoria da nutrição de P em milho precisa ser investigada futuramente em experimentos in vivo.

Palavras-chave: Biossolubilização; Fósforo; Zea mays; fosfato de Araxá; fosfato de Itafós.

 

1 Embrapa Maize and Sorghum, Sete Lagoas, MG, Brazil, eliane.a.gomes@embrapa.br, ivanildo.marriel@embrapa.br, christiane.paiva@embrapa.br, ubiraci.lana@embrapa.br
2 Federal University of Viçosa, Viçosa, MG, Brazil, ubiana@yahoo.com.br

 

Literatura Citada

ALTSCHUL, S. F.; MADDEN, T. L.; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research, Oxford, v. 25, p. 3389-3402, 1997. https://doi.org/10.1093/nar/25.17.3389

ANANDHAM, R.; CHOI, K. H.; GANDHI, P. I.; YIM, W. J.; PARK, S. J.; KIM, K. A.; MADHAIYAN, M.; SA, T. M. Evaluation of shelf life and rock phosphate solubilization of Burkholderia sp. in nutrient-amended clay, rice bran and rock phosphate-based granular formulation. World Journal of Microbiology and Biotechnology, Oxford v. 23, p. 1121- 1129, 2007. https://doi.org/10.1007/s11274-006-9342-y

AUSUBEL, F. M.; BRENT, R.; KINGSTON, R. E.; MOORE, D. D.; SIDEMAN, J. G.; SMITH, J.A.; STRUHL, K. Current Protocols in Molecular Biology. New York: J. Wiley, 1987.

AZZIZ, G.; BAJSA, N.; HAGHJOU, T.; TAULÉ, C.; VALVERDE, Á.; IGUAL, J. M.; ARIAS, A. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop-pasture rotations in a notillage regime in Uruguay. Applied Soil and Ecology, Amsterdam, v. 61, p. 320-326, 2012. https://doi.org/10.1016/j.apsoil.2011.10.004

BALANDREAU, J.; VIALLARD, V.; COURNOYER, B.; COENYE, T.; LAEVENS, S.; VANDAMME, P. Burkholderia cepacia genomovar III is a common plant-associated bacterium. Applied and Environmental Microbiology, Washington, v. 67, p. 982-985, 2001. https://doi.org/10.1128/AEM.67.2.982-985.2001

BALIGAR, V. C.; FAGERIA, N. K.; HE, Z. L. Nutrient use efficiency in plants. Communication in Soil Science and Plant Analysis, New York, v. 32, p. 921-950, 2001. https://doi.org/10.1081/CSS-100104098

BARROSO, C. B.; NAHAS, E. Solubilização do fosfato de ferro em meio de cultura. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 43, p. 529-535, 2008. https://doi.org/10.1590/S0100-204X2008000400012

BROWNE, P.; RICE, O.; MILLER, S. H.; BURKE, J.; DOWLING, D. N.; MORRISSEY, J. P.; O’GARA, F. Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Applied and Soil Ecology, Amsterdam,v. 43, p. 131-138, 2009. https://doi.org/10.1016/j.apsoil.2009.06.010

CHEN, Y. P.; REKHA, P. D.; ARUN, A. B.; SHEN, F. T.; LAI, W. A.; YOUNG, C. C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied and Soil Ecology, Amsterdam, v. 34, p. 33-41, 2006. https://doi.org/10.1016/j.apsoil.2005.12.002

CHUNG, H.; PARK, M.; MADHAIYAN, M.; SESHADRI, S.; SONG, J.; CHO, H.; SA, T. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, Elmsford, v. 37, p. 1970-1974, 2005. https://doi.org/10.1016/j.soilbio.2005.02.025

FERREIRA, D. F. SISVAR: um programa para análises e ensino de estatística. Revista Symposium, Lavras, v. 6, p. 36-41, 2008.

GHANI, A.; RAJAN, S. S. S.; LEE, A. Enhancement of phosphate rock solubility through biological processes. Soil Biology and Biochemistry, Elmsford, v. 26, p. 127-136, 1994. https://doi.org/10.1016/0038-0717(94)90204-6

GOLDSTEIN, A. H.; ROGERS, R. D.; MEAD, G. Mining by microbe. Biotechnology, Frankfurt, v. 11, p. 1250-1254, 1993. https://doi.org/10.1038/nbt1193-1250

GULATI, A.; VYAS, P.; RAHI, P.; KASANA, R. C. Plant growth promoting and rhizosphere competent Acinetobacter rhizosphere strainBIHB 723 from the cold desert of Himalayas. Current Microbiology, New York, v. 58, p. 371-377, 2009. https://doi.org/10.1007/s00284-008-9339-x

HEBBAR, K. P.; MARTEL, M. H.; HEULIN, T. Burkholderia cepacia, a plant growth promoting rhizobacterial associate of maize. In: RYDER, M. H.; STEPHENS, P. M.; BOWEN, G. D. (Ed.). Improving plant productivity with rhizosphere bacteria. Adelaide: Commonwealth Scientific and Industrial Research Organization, 1994. p. 201-203.

KHAN, M. S.; ZAIDI, A., WANI, P. A. Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. Agronomy for Sustainable Development, Paris, v. 27, p. 29-43, 2007. https://doi.org/10.1051/agro:2006011

KHAN, M. S.; ZAIDI, A.; AHEMAD, M.; OVES, M.; WANI, P. A. Plant growth promotion by phosphate solubilizing fungi - current perspective. Archives of Agronomy and Soil Science, London, v. 56, p. 73-98, 2010. https://doi.org/10.1080/03650340902806469

KLIEMANN, H. J., LIMA, D. V. Eficiência agronômica de fosfatos naturais e sua influência no fósforo disponível em dois solos de Cerrado. Pesquisa Agropecuária Tropical, Goiânia, v. 31, p. 111-119, 2001.

LOUREIRO, F. E. L.; MONTE, M. B. M.; NASCIMENTO, M. Agrominerais - fosfato em rochas & minerais industriais - usos e especificações. 2. ed. Rio de Janeiro: CETEM, 2008.

MARRA, L. M.; OLIVEIRA, S. M.; SOARES, C. R. F. S.; MOREIRA, F. M. S. Solubilization of inorganic phosphates by inoculant strains from tropical legumes. Scientia Agricola, Piracicaba, v. 68, p. 603-609, 2011. https://doi.org/10.1590/S0103-90162011000500015

MENDES G. O.; VASSILEV, N. B.; BONDUKI, V. H.; SILVA, I. R. da; RIBEIRO JR., J. I.; COSTA, M. D. Inhibition of Aspergillus niger phosphate solubilization by fluoride released from rock phosphate. Applied Environmental Microbiology, Washington, v. 79, p.4906-4913, 2013. https://doi.org/10.1128/AEM.01487-13

MOHAMMADI, K. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Resource and Environment Journal, Rosemead, v. 2, p. 80-85, 2012.

MURPHY, J.; RILEY, J. P. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, Amsterdam, v. 27, p. 31-36, 1962. https://doi.org/10.1016/S0003-2670(00)88444-5

NARAGHI L.; HEYDARI, A.; REZAEE S.; RAZAVI M. Biocontrol Agent Talaromyces flavus stimulates the growth of cotton and potato. Journal of Plant Growth Regulation, New York, v. 31, p. 471-477, 2012. https://doi.org/10.1007/s00344-011-9256-2

NAUTIYAL, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, Amsterdam, v. 170, p. 265-270, 1999. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

NOVAIS, R. F.; SMYTH, T. J. Fósforo em solo eplanta em condições tropicais. Viçosa, MG: Universidade Federal de Viçosa, 1999. 399 p.

NUBEL, U.; ENGELEN, B.; FELSKE, A.; SNAIDR, J.; WIESHUBER, A.; AMANN, R. I.; LUDWIG, W.; BACKHAUS, H. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis.Journal of Bacteriology, Washington, v. 178, p. 5636-5643, 1996. https://doi.org/10.1128/jb.178.19.5636-5643.1996

OLIVEIRA, C. A.; ALVES, V. M. C.; MARRIEL, I. E.; GOMES, E. A.; MUZZI, M. R. S.; CARNEIRO, N. P.; GUIMARÃES, C.T.; SCHAFFERT, R. E.; SÁ, N. M. H. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology & Biochemistry, Elmsfordv, v. 41, p. 1782- 1787, 2009.

PEIX, A.; MATEOS, P. F.; RODRIGUEZBARRUECO, C.; MARTINEZ-MOLINA, E.; VELAZQUEZ, E. Growth promotion of common bean (Pasheolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry, Elmsford, v. 33, p. 1927-1935, 2001. https://doi.org/10.1016/S0038-0717(01)00119-5

RAEDER, U.; BRODA, P. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology, Oxford, v. 1, p. 17- 20, 1985. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x

RAJAPAKSHA, R. M. C. P.; HERATH, D.; SENANAYAKE, A. P.; SENEVIRATHNE, M. G. T. L. Mobilization of rock phosphate phosphorus through bacterial inoculants to enhance growth and yield of wetland rice. Communications in Soil Science and Plant Analysis, New York, v. 42, p. 301-314, 2011. https://doi.org/10.1080/00103624.2011.539084

RICHARDSON, A. E.; BAREA, J-M.; MCNEILL, A. M.; PRIGENT-COMBARET, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, The Hague, v. 321, p. 305-339, 2009. https://doi.org/10.1007/s11104-009-9895-2

RICHARDSON, A. E.; SIMPSON, R. J. Soil microorganisms mediating phosphorus availability. Plant Physiology, Washington, v. 156, p. 989-996, 2011. https://doi.org/10.1104/pp.111.175448

RODRÍGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, New York, v. 17, p. 319-339, 1999. https://doi.org/10.1016/S0734-9750(99)00014-2

SABER, W. I. A.; GHANEM, K. M.; EL-HERSH, M. S. Rock phosphate solubilization by two isolates of Aspergillius niger and Penicillium sp. and their promotion to mung bean plants. Research Journal of Microbiology, New York, v. 4, p. 235-250, 2009. https://doi.org/10.3923/jm.2009.235.250

SALE, P. W. G.; MOKWUNYE, A. U. Use of phosphate rocks in the tropics. Fertilizer research, Boon, v. 35, p. 33-45, 1993.

SCERVINO, J. M.; MESA, M. P.; MÓNICA, I. D.; RECCHI, M.; MORENO, N. S.; GODEAS, A. Soil fungal isolates produce different organic acid patterns involved in phosphat salts solubilization. Biology and Fertility ofSoils, Berlin, v. 46, p. 755-763, 2010.

SCHRÖDER, J. J.; CORDELL, D.; SMIT, A. L.; ROSEMARIN, A. Sustainable use of phosphorus. Wageningen: Plant Resource International, 2010. 122 p.

SIMPSON, P. G.; SALE, P. W. G.; TENNAKOON, S. B. An economic analysis of the field performance of North Carolina reactive phosphate rock compared with single superphosphate for selected sites from the national reactive phosphate rock project. Australian Journal of Experimental Agriculture, Melbourne, v. 37, p. 1061-1076, 1997. https://doi.org/10.1071/EA96120

SINGH, H.; REDDY, M. S. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology,Montrouge, v. 47, p. 30-34, 2011. https://doi.org/10.1016/j.ejsobi.2010.10.005

VAN STRAATEN P. Rocks for crops - Agro minerals of sub-Saharan Africa. Nairobi: ICRAF ; Guelp: University of Guelph, 2002. p. 338.

VAN STRAATEN, P. Farming with rocks and minerals: challenges and opportunities. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v. 78, p. 731-747, 2006.

VYAS, P.; GULATI, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphatesolubilizing fluorescent Pseudomonas. BMC Microbiology, London, v. 9, p. 174-188, 2009. https://doi.org/10.1186/1471-2180-9-174

WHITE, T. J.; BRUNS, T.; LEE, S.; TAYLOR, J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: INNIS, M. A.; GELFAND, D. H.; SNINSKY, J. J.; WHITE, T. J. (Ed.). PCR Protocols: a guide to methods and applications. San Diego:Academic Press, 1990. p. 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

XIAO, C-Q.; CHIB, R-A.; HUANGB, X-H.; ZHANGC, W-X.; QIUA, G-Z.; WANGA D-Z.; Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecological Engineering, Oxford, v. 33, p. 187-193, 2008. https://doi.org/10.1016/j.ecoleng.2008.04.001